Exercises

Derivatives

Exercise 1.

(a) Use the chain-rule and the product-rule to prove for two differentiable functions f, g the quotient-rule

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

(b) Use the properties of the exponentiation (in particular that $a=e^{\ln (a)}$ and $\left.\left(e^{a}\right)^{b}=e^{a \cdot b}\right)$ to compute the derivatives of the following functions:
(i) $f(x)=a^{x} \quad$ for $a \in \mathbb{R} \backslash\{0\}$
(ii) $f(x)=x^{x}$

Exercise 2. Compute the derivatives of the following functions
(a) $f(x)=e^{\sqrt{x}}$
(b) $f(x)=\frac{1}{x}-x^{3}+2 \ln x+e$
(c) $f(x)=\sin ^{2} x \cdot \cos ^{2} x$
(d) $f(x)=2^{x}+\frac{\ln x}{2}-\frac{1}{x}$
(e) $f(x)=\frac{x^{2}}{\sin x+x}$
(f) $f(x)=e^{(x+2)^{2}-x}$

Exercise 3. Compute all local and global extrema of the following functions.
(a) $f(x)=2 x^{3}+3 x^{2}-36 x+42$
(b) $g(x)=e^{(x+2)^{2}-x}$

Exercise 4. Compute the following limits with L'Hôspital's rule.
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
(b) $\lim _{x \rightarrow 0} \ln (x) \cdot x$
(c) $\lim _{x \rightarrow 0} \frac{e^{x}-x-1-\frac{1}{2} x^{2}}{\sin x-x}$

Exercise 5. Let f be a differentiable and invertible function. Then the following rule for the derivative of the inverse holds

$$
\left(f^{-1}(x)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

for all x with $f^{\prime}\left(f^{-1}(x)\right) \neq 0$.
(a) Prove this rule.

Hint: Use that $f\left(f^{-1}(x)\right)=x$ and compute the derivative of both sides of this equation (use the chain rule).
(b) Use this rule to prove that

$$
(\ln (x))^{\prime}=\frac{1}{x}
$$

where $\ln (x)$ is the natural logarithm, i.e. the inverse of e^{x}.
(c) Consider the function $\tan (x):\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ defined by $\tan (x):=\frac{\sin (x)}{\cos (x)}$.
(i) Use the quotient rule to obtain

$$
(\tan (x))^{\prime}=1+\tan ^{2}(x)
$$

(ii) Let $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be the inverse function of $\tan ($ i.e. $\tan (\arctan (x))=$ $x)$. Use the rule for the derivative of the inverse above to prove

$$
(\arctan (x))^{\prime}=\frac{1}{1+x^{2}}
$$

